Processing math: 100%

Friday, October 14, 2016

Application of AM >= GM solution

The problem was to show that

(1+1n+1)n+1>(1+1n)n


using the AM >= GM inequality.

Let x1=x2==xn=1+1n and xn+1=1

Applying the AM >= GM to the xi we get that

x1+x2++xn+1n+1n+1x1x2xn+1


i.e

n(1+1n)+1n+1n+1(1+1n)n


i.e

(1+1n+1)(1+1n)nn+1


Raising both sides to the (n+1)th power gives us the result.

No comments:

Post a Comment