Simplify
$$ \frac{\sqrt{10 + \sqrt{1}} + \sqrt{10 + \sqrt{2}} + \dots + \sqrt{10 + \sqrt{99}}}{\sqrt{10 - \sqrt{1}} + \sqrt{10 - \sqrt{2}} + \dots + \sqrt{10 - \sqrt{99}}}$$
Scroll down for simplified form and solution.
The expression is equal to $\sqrt{2} + 1$. Surprising!
Scroll down for solution.
Let $a + b $ = 100.
Now
$$\sqrt{10 - \sqrt{a}} \sqrt{10 + \sqrt{a}} = \sqrt{100 - a} = \sqrt{b}$$
Let $u = \sqrt{10 + \sqrt{a}}$ and $v = \sqrt{10 - \sqrt{a}}$
So $20 = u^2 + v^2$
and $\sqrt{b} = uv$
Thus
$$\sqrt{20 + 2\sqrt{b}} = \sqrt{u^2 + v^2 + 2uv} = u+v$$
Similarly
$$\sqrt{20 - 2\sqrt{b}} = \sqrt{u^2 + v^2 - 2uv} = u-v$$
Thus if
$$P = \sum_{a=1}^{99} \sqrt{10 + \sqrt{a}}$$
and
$$Q = \sum_{a=1}^{99} \sqrt{10 - \sqrt{a}}$$
We get
$$ \sqrt{2} P = P + Q$$ and
$$\sqrt{2} Q = P - Q$$
This gives us $$\frac{P}{Q} = \sqrt{2} + 1$$
No comments:
Post a Comment