Processing math: 100%

Friday, December 5, 2014

Online splitting a cake, algorithm puzzle

You want to evenly split a cake of volume one between two people, say A and B, so that each gets the same volume of cake.

Problem is, there is another person, C, who has already split the cake into a finite number of pieces, each piece being of a volume which is a negative power of two: of the form 12k for some integer k>0. The pieces need not have the same volume and you could have multiple pieces with the same volume. For example, one such split could be {18,18,14,12}.

C is also holding the cake hostage, and will only give you one piece at a time (in some random order), on the condition that you immediately make a decision who (A or B) to give the piece to. You cannot revisit that piece later.

Can you think of an algorithm which will help split the cake equally between A and B in this scenario? Just an algorithm won't do, you need to prove that it works too.

[For the reason why it is called online, read this]

[Solution]

No comments:

Post a Comment